05) were demonstrated, with post-hoc analysis revealing that hepcidin levels were significantly higher
3 h post-exercise as compared to baseline during RTB (p ≤ 0.05), which was supported by a large ES (d = 1.68). Furthermore, 3 h post-exercise hepcidin levels were significantly higher (p ≤ 0.05) during RTB as compared Kinase Inhibitor Library clinical trial to CTB (d = 0.68, moderate). For D2, there were no significant main effects, although a large ES (d = 0.99) suggested that hepcidin levels may be increased 3 h post-exercise when compared to baseline for RTB. Additionally, baseline hepcidin levels were significantly higher at D2 as compared to D1 for RTB (p ≤ 0.05). For D6, no significant main effects were again recorded. However, large ES suggested hepcidin levels may increase 3 h post-exercise as compared to baseline in both RTB (d = 1.69) and CTB (d = 0.99). Basal urinary hepcidin levels for D1, R3 and R7 are displayed in Table 4. No trial effects were recorded between days, but time effects revealed that hepcidin levels were significantly higher at R3 (p = 0.010; d = 0.79, moderate) and R7 (p = 0.016; d = 0.49, moderate) as compared to baseline in RTB. Additionally, a large ES (d = 1.26) suggested that basal hepcidin levels were higher at R7 than
D1 during CTB. Table 3 Mean Atezolizumab concentration (±SEM) for urinary hepcidin levels at baseline (T0) and 3 h post-exercise (T3) during the exercise days for the running (RTB) and cycling (CTB) training blocks Urinary hepcidin (nM.mmol Cr−1) p-values Effect sizes T0 T3 Trial Time Interaction T0-T3 T0: RTB-CTB T3: RTB-CTB Day 1 RTB 0.46 1.19a 0.179 0.002 0.014 1.68 0.15 0.68 (0.14) (0.26) CTB 0.52 0.64b 0.63 (0.06) (0.10) Day 2 RTB 0.76c 1.38 0.524 0.245 0.190 0.99 0.14 0.54 (0.20) (0.37) CTB 0.85 0.84 0.02 (0.24) (0.28) Day 6 RTB 0.71 0.93 0.173 0.171 0.505 1.69 0.29 0.25 (0.04) (0.16) CTB 0.43 0.80 0.99 (0.12) (0.28) aSignificantly different
to T0. bSignificantly different to RTB Day 1, T3. cSignificantly different to RTB Day 1, T0. Table 4 Mean (±SEM) urinary hepcidin levels at baseline (T0) on Day 1 and Recovery days 3 and 7 for the running (RTB) and cycling (CTB) training blocks Urinary hepcidin (nM.mmol Cr−1) p-values Effect sizes T0 Trial Time Interaction RTB -CTB Day 1-Recovery 3, 7 Recovery 3-7 Day 1 RTB 0.62 1.000 0.047 0.365 0.15 – - (0.20) CTB 0.56 (0.10) Recovery 3 RTB 0.80a 0.28 0.79 – (0.17) CTB 0.64 0.64 (0.18) 3-mercaptopyruvate sulfurtransferase Recovery 7 RTB 0.67a 0.20 0.49 0.24 (0.14) CTB 0.76 1.26 0.21 (0.18) aSignificantly different to RTB Day1. Discussion The results of this investigation suggest that acute bouts of running (as compared to cycling) performed over a seven day period have the ability to significantly increase basal urinary hepcidin levels.