The male group (n = 37) consumed
a total of 13.4 L of fluids during the race, equal to 0.6 ± 0.1 L/h. Fluid intake varied between 0.30 L/h and 0.80 L /h. Fluid intake was not related to changes in body mass, fat mass, extracellular fluid, plasma urea or post-race plasma [Na+] (P > 0.05). Extracellular fluid decreased by 0.2 ± 0.6 L (P < 0.05), whereas total body water PF299 clinical trial and intracellular fluid decreased non-significantly in men (P > 0.05) (Table 2). Percent changes in extracellular fluid were significantly and positively related to changes in body mass (r = 0.88, P < 0.001), and significantly and negatively to percent changes in plasma urea (r = -0.52, P < 0.05). On the contrary, percent changes in extracellular fluid were not associated with percent changes in plasma volume or fluid intake. The volume of the lower leg remained unchanged selleckchem in men (P > 0.05) (Table 2), and was neither related to fluid intake nor to changes in plasma [Na+] (P > 0.05). The male 24-hour ultra-MTBers were on average euhydrated post-race (Table 2). Thereof, twenty male ultra-MTBers were euhydrated (54.2%), thirteen were dehydrated (35.1%), and four males were overhydrated (10.7%) following the definition of Noakes et al. [11]. The female group (n = 12) consumed a total of 8.88 L
of fluids during the race, equal to 0.37 L/h. Fluid intake varied between 0.20 L/h and 0.50 L/h. Fluid intake Sclareol was not related to percent changes in body mass, changes in fat mass, or changes in plasma urea (P > 0.05). The volume of the lower leg remained unchanged in women (P > 0.05) (Table 2), and was neither related to fluid intake nor to changes in plasma [Na+] (P > 0.05). The female ultra-MTBers
were on average euhydrated (Table 2). Thereof, seven female ultra-MTBers were euhydrated (58.3%), two were dehydrated (16.7%) and three were overhydrated (25.0%) following the definition of Noakes et al. [11]. Discussion The first important finding of this study was that both male and female 24-hour ultra-MTBers suffered significant losses in body mass and fat mass during the 24-hour MTB race. Skeletal muscle mass showed, however, no significant changes in Angiogenesis inhibitor contrast to fat mass. The second important finding for men was that changes in body mass were related to a decrease in post-race fat mass, and correlated with the changes in extracellular fluid and post-race plasma urea. The third important finding was that the volume of the lower leg remained unchanged in both men and women and was neither related to fluid intake nor to the changes in plasma [Na+]. And a last finding was that faster men and women drank more than the slower ones and showed higher losses in body mass, in men also higher fat mass losses.