Prognostic markers like natriuretic peptide (NP), B-type natriuretic peptide (BNP), or pro-BNP are used to predict postoperative cardiac complications after cardiac or non-cardiac KU55933 purchase surgery, while
procalcitonin is commonly used as prognostic marker and indicator of mortality and antibiotics usage in septic patients. In addition, lactate clearance was recently reported to be a useful indicator of resuscitation and prognosis in severe sepsis [2, 3]. Furthermore, some scoring systems, such as, the acute physiologic and chronic health evaluation (APACHE) II, the sequential organ failure assessment (SOFA), and multiple organ dysfunction score (MODS) systems, are also used to evaluate critically ill patient’s condition. However, no clinically adaptable markers, except lactate clearance and procalcitonin, are available for determining the outcomes of critically ill surgical patients with RG7112 purchase severe sepsis. Inflammatory processes after infection are known to involve cells, inflammatory mediators, cytokines, pro-inflammatory substances, nitric oxide, arachidonic acid metabolites, and oxygen free radicals. These mediate and induce organ injury leading to organ failure [4–10]. Recently, many reports have been issued on the roles of oxygen free radicals and antioxidants, such as, glutamine, zinc, and selenium, which act as cofactors of glutathione
peroxidase [11, 12]. Oxygen free radicals (OFR) cause oxidative damage in cells, which lead to DNA damage and mitochondrial dysfunction culminates in cell death [13–15]. There is evidence that oxidative stress caused by reactive oxygen species(ROS) in sepsis is characterized by tissue ischemia reperfusion injury and intense systemic inflammatory response [16–19]. Furthermore, oxidative stress and OFR impair the microcirculation, which induce acute renal failure, and have been correlated
with sepsis severity and sepsis-induced morbidity. In sepsis, the protective role of antioxidants against oxidative stress has been known for more than 15 years [20–22]. Supplementation with antioxidants, such as, glutamine, zinc, and selenium may decrease oxidative stress and increase antioxidant Prostatic acid phosphatase activity, but apparently, do not affect mortality [23–28]. Early recognition of oxidative damage in sepsis by assessment of oxidative stress biomarkers is an actual topic for future research [29, 30]. Methods Aim The purpose of the study is to assess the usefulness of the concentration of the oxygen free radical and antioxidants to predict the severity and mortality of the critically ill surgical patients. Study population This prospective study will be performed over 2-year periods (May 2012 ~ April 2014) in single institution. About 50 patients having severe sepsis or septic shock requiring C646 emergency operation due to the bowel perforation or strangulation will be included.