“The aim of this study was to evaluate the ability of TMC,


“The aim of this study was to evaluate the ability of TMC, with different degrees of quaternization, to increase insulin absorption in vivo following nasal and rectal administration in rats. Two batches of TMC with different degrees of quaternization (TMC-L, 12.3% quaternized and TMC-H, 61.2% quaternized) and chitosan hydrochloride were administered intranasally (0.25 and 0.5% w/v) and rectally (0.5% w/v) with insulin (4 IU/kg body weight), at a pH of 4.40 and 7.40, in rats. Blood samples were taken over a period of 2 h for measurement of blood glucose levels and plasma insulin Linsitinib in vivo levels. Local toxicity evaluation

was done by histological examination of the nasal and rectal epithelia. At pH 4.40 all these polymers were able to increase nasal and rectal insulin absorption, compared to the control groups. However, at a pH of 7.40, only TMC-H was able to increase the nasal and rectal absorption of insulin. These results relate to the insolubility of chitosan hydrochloride

at neutral pH values, while the charge density of TMC-L is still too low for any significant interaction at pH 7.40. Histological evaluation of the nasal and rectal eptihelia shows no changes in the morphology of the cells learn more after exposure to these polymers. Only slight congestion of the nasal submucosa was observed and all these polymers led to a mild increase CH5183284 ic50 in mucus secretion at pH 4.40. Highly quaternized TMC proves to be a potent absorption enhancer in vivo, especially at neutral pH values where chitosan salts are ineffective.”
“Genomic imprinting is a widespread epigenetic phenomenon in mammals and many imprinted genes are expressed in the developing hypothalamus and placenta. The placenta and brain are very different structures with very different

roles, but in the pregnant mother they functionally interact coordinating and ensuring the provision of nutrients, timing of parturition and priming of hypothalamus for maternal care and nurturing. This interaction has been evolutionarily fine-tuned to optimise infant survival such that when resources are poor, the mother ‘informs’ this condition to the foetus producing a thrifty phenotype that is adapted to survive scarce resources after birth.”
“Efficient and specific delivery of antisenses (ASs) and protection of the sequences from degradation are critical factors for effective therapy. Sustained release nanoparticles (NP) offer increased resistance to nuclease degradation, increased amounts of AS uptake, and the possibility of control in dosing and sustained duration of AS administration. The biodegradable and biocompatible poly(D,L-lactic-co-glycolic acid) copolymer (PLGA) was utilized to encapsulate AS directed against osteopontin (OPN), which is a promising therapeutic target in mammary carcinoma.

Comments are closed.