[2] who also noted the presence of a conserved Cys-containing motif in C. albicans Fmp45p similar to the consensus sequence that is characteristic of members of the claudin family of proteins. To explore the functional relation between C. albicans SUR7 and FMP45, we created a double-fluorescent labelled strain, SUR7-YFP FMP45-GFP, whose expression of both fusion proteins remain under the control of their native promoters. While the fluorescence emission overlap of YFP and GFP makes it impossible to separate them using conventional epifluorescence imaging, the Nuance™ Multispectral Imaging System (CRi) can distinguish VX-680 molecular weight the spectra of the YFP- and GFP-tagged proteins, and produce
separate images of Sur7p-YFP and Fmp45p-GFP from the single SUR7-YFP FMP45-GFP strain. The merged fluorescence images indicate that Fmp45p co-localizes in a punctate pattern with the plasma membrane-bound protein Sur7p (Fig. 2A). These results are similar to that observed in S. cerevisiae [4]. We thus hypothesized that under these specific growth conditions (high temperature and salt), the C. albicans paralog FMP45 may be contributing to a compensatory response to high salt. Figure 2 Induction and cellular localization of
Fmp45p-GFP. (A) Spectral cube (fluorescence) images were acquired using the Nuance™ Multispectral Imaging System (CRi) to assess cellular localization of Fmp45p-GFP and Sur7p-YFP in the multi-labelled strain PRI-724 clinical trial SUR7-YFP FMP45-GFP. Individual localization
is shown for each protein of interest (Sur7p-YFP and Fmp45p-GFP). Sur7p-YFP was artificially rendered in red so that co-localized proteins can be readily distinguished (yellow) in the merged image. (B) Localization of Fmp45p-GFP in either the wild-type (BWP17) or sur7Δ null (SMB3) background was visualized by laser scanning confocal microscopy. Strains were grown at 42°C at a starting OD600 of 0.1 in complete MRT67307 supplier synthetic medium, supplemented with 1.0 M NaCl where required. After 24 h growth, SPTBN5 confocal fluorescence images were documented using parameters optimized for imaging the sur7Δ FMP45-GFP strain (sΔ-FMP45gfp) grown in the presence of high salt. Panels show fluorescence and DIC images of strains B-FMP45gfp (I and III, excluding and including salt, respectively) and sΔ-FMP45gfp (II and IV, excluding and including salt, respectively). To test this hypothesis, we created strains B-FMP45gfp and sΔ-FMP45gfp expressing the Fmp45p-GFP fusion protein in both wild-type and sur7Δ null backgrounds, respectively (Table 1). In the wild-type background, Fmp45p-GFP fluorescence intensity is very low, and appears to display a punctate pattern of plasma membrane localization (Fig. 2B, panel I). In the presence of high salt, Fmp45p fluorescence intensity in the SUR7 + background is increased (Fig. 2B, panel III).