Bio/Technology 1983, 1:784–791.CrossRef Authors’ contributions TH, SM, find more YYO, YKo, and SSI performed the experiments. TH and NO designed the experiments. TMi constructed the TM157, TM129, and TM548 strains. YKu assisted with the experiments. MOI, TMa, and HD advised regarding the design of the experiments. TH and NO wrote the paper.”
“Background Staphylococcus aureus, a major human pathogen causes a wide range of disease syndromes, including life-threatening endocarditis, meningitidis and pneumonia. According to the Centers for Disease Control and Prevention this bacterium has been reported to be the most significant cause of serious infections in the United States [1]. S. aureus is able to
cause and develop an infection learn more very efficiently due to its ability to produce a few dozen of virulence factors, on one hand, and an ease of antibiotic resistance development, on the other. The most dangerous are methicillin-resistant S. aureus (MRSA) strains, constituting 50% of hospital-aquired isolates as well as emerging vancomycin-resistant variants,
isolated from some hospital settings [2]. Among several virulence factors, S. aureus produces enzymes responsible for resistance against oxidative stress, like catalase and superoxide dismutase (Sod). Sod converts superoxide anion (O2·-) into hydrogen peroxide (H2O2), a less potent biological oxidant, which is further decomposed by catalase to water and ground state oxygen. Sod enzyme is produced in response to the presence of reactive oxygen species (ROS) generated endogenously as an effect of oxygen metabolism or, exogenously produced by neutrophils and macrophages. Superoxide anion,
which Dimethyl sulfoxide is the product of oxygen reduction, reacts with hydrogen peroxide within the bacterial cell and produces free hydroxyl ICG-001 molecular weight radical (.OH), the most dangerous oxygen species able to interact with virtually any organic substance in the cell. Superoxide anion can reduce hypochlorus acid (HOCl) arose as a result of H2O2 interaction with phagocyte-derived peroxidases, and further form .OH [3]. The classification of Sod enzymes is based on the type of transition metal present in their active center, including manganese (Mn), iron (Fe), copper (Cu) and a few years ago a nickel (Ni)-containing Sod was described, originally isolated from the cytoplasm of Streptomyces seoulensis [4, 5]. In the Escherichia coli bacterium model, the presence of three Sods were described: Fe- and Mn- Sods localized in the cytoplasm, whereas in the periplasm copper-zinc (Cu-Zn) SOD was detected [6]. S. aureus produces three Sod enzymes, encoded by two genes, sodA and sodM [7, 8]. The particular subunits form two kinds of Sod homodimers, i.e. SodA-SodA and SodM-SodM as well as SodA-SodM heterodimers, easily distinguishable on native gels stained for Sod activity [8]. Both, SodA and SodM subunits are believed to possess Mn ions as a cofactor in the active site.