We have measured this change in mitochondrial membrane potential

We have measured this change in mitochondrial membrane potential after treatment of cells with different doses of ATO and by labeling with very sensitive cationic carbocynine dye, JC-1. In control sample, healthy mitochondria showed high mitochondrial membrane potential (ψm) with intact membrane and accumulated in their matrix more JC-1 to form J- aggregates, showing intense fluorescence at 590 nm. Whereas in ATO treated cells, mitochondria showed lower ψm and less accumulation of JC-1 in their matrix leading to less formation of J-aggregates, and weak fluorescence at 590 nm (Figure 3A). We have also done confocal microscopy imaging of control and ATO-treated cells followed

by staining with JC-1 and DAPI. JC-1 monomer (530 nm) expression was activated by ATO treatment in #selleckchem randurls[1|1|,|CHEM1|]# a dose-dependent manner [Figure 3B (i-v)]. Figure 3 ATO changes mitochondrial membrane potential (Δψm). (A) ATO treatment was changed the mitochondrial membrane potential in a dose- dependent manner. [(B)(i-v)] There are three subsets of each treatment-DAPI (blue), JC-1 monomer (excitation 530 nm, green) and merged (blue/green). ATO treatment dose–dependently changed mitochondrial membrane potential and opened transition pores. It helped to release J-aggregate and continuously increased JC-1 monomer (green color) in a dose dependent manner in HL-60 cells.

Arsenic trioxide stimulates translocation of Bax and Cytochrome C Previous research has reported that Elafibranor oxidative stress activates translocation of pro-apoptotic proteins from cytosol to mitochondria and release of cytochrome C from mitochondria to cytoplasm inside cell [33]. We have checked ATO-induced translocation of pro-apoptotic protein, Bax from cytosol to mitochondria and cytochrome C from mitochondria to cytosol by labeling cells with Hoechst staining, mitochondria with mitotracker red and Bax as well as cytochrome C protein with green fluorescent antibody. Our results show that the amount of translocated Bax

inside mitochondria Atorvastatin [Figure 4 (i-v)] and cytochrome C protein in cytosol of ATO treated HL-60 cells increased in a dose-dependent manner [Figure 5A (i-v)]. We used green fluorescent tag anti-Bax and anti-cytochrome C antibody to recognize translocation of Bax and cytochrome C by immunocytochemistry and confocal imaging of cells. Figure 4 (i-v) Arsenic trioxide stimulates translocation of Bax protein. Each image set contains four subsets, a – cells stained with DAPI (blue); b – mitochondria stained with mitotracker red CMXRos (red, 250 nM); c – Bax protein tagged with fluorescent secondary antibody (green); and d – merged image of all previous three (a, b and c). Both immunocytochemistry and confocal imaging show translocation of pro-apoptotic protein, Bax from cytosol to mitochondria in a dose – dependent manner. Figure 5 Arsenic trioxide induces release of cytochrome C protein from mitochondria and activation of caspase 3.

Comments are closed.