Both

serum and urine samples were positive (scores of 1 o

Both

serum and urine samples were positive (scores of 1 or 2) when the dot-blot assay was done during the active phase. After 3 months of treatment in hospital, both serum and urine samples showed weaker reactions. Subsequently, both serum and urine became negative, suggesting that the disease had become inactive. When we compared dot-blot assay results of samples from infected and uninfected subjects, the mean value for serum samples from infected subjects was 1.14, which was significantly higher than the mean value of 0.15 for those from uninfected subjects (Fig. 5). The mean assay value for serum samples from patients with active disease was 1.43, which was also significantly higher than that for those from patients with inactive disease (0.93). Thus, dot-blot Protein Tyrosine Kinase inhibitor Palbociclib assay using MPB64 antigen produced a significantly higher frequency of positive results with infected serum samples than with uninfected serum samples; it also produced a significantly higher frequency of positive results with serum samples from active

disease than with those from inactive disease. The sensitivity and specificity of this assay for serum samples was 85.7% and 85.0%, respectively. The mean dot-blot assay value for infected urine samples was 0.96, which was significantly higher than the mean value of 0.2 for uninfected urine samples. The mean value for urine samples from patients with active disease was 1.36, which was also significantly higher than the mean value of 0.56 for those from inactive disease. Thus, the dot-blot assay using MPB64 antigen yielded a significantly higher frequency of positive results with urine samples from infected patients than with those from uninfected individuals. In addition, this test was positive significantly more frequently for samples from patients with active disease than for samples

from those with inactive disease. The sensitivity and specificity of this assay for 4-Aminobutyrate aminotransferase urine samples was 75.0% and 85.0%, respectively. We combined and compared data for serum samples from uninfected individuals and TB patients with active or inactive disease with urine data to assess any correlations between them (Fig. 6). All the serum and urine samples that showed strong reactions (rated as “2”) were from patients with active disease. Serum or urine samples from all patients with active disease showed positive reactions (“1” or “2”) on dot-blot assay. None of the serum and urine samples from uninfected subjects showed strong reactions and only a few displayed weak reactions. All the serum and urine samples from patients with inactive disease were also negative or weakly positive. When we compared data from urine and serum specimens, we found a strong correlation between the results for both specimens (n = 34, r = 0.672). In many countries, the diagnosis of TB still relies on chest X-ray films and Ziehl-Neelsen staining of sputum specimens.

15 In this study, we have shown that both CD14 and CD36 were resp

15 In this study, we have shown that both CD14 and CD36 were responsible for the uptake of FSL-1 (Figs. 9 and 10), although it remains unknown how CD14 and CD36 in lipid rafts play roles in clathrin-dependent endocytosis. Therefore, studies are in progress to elucidate the detailed mechanism selleck chemicals llc of FSL-1 uptake by CD14 and CD36. Mycoplasmas are wall-less prokaryotes characterized by small genomes, and known as the smallest self-replicating organisms.43 Lipoprotein, an integral component of mycoplasmal cell membrane, is a potent pathogenic factor in mycoplasmal infections.44–47 This study showed that the diacylated lipopeptide FSL-1, the active entity

of mycoplasmal lipopeptide, was internalized by a clathrin-dependent endocytosis. Some pathogenens, such as influenza A viruses, Dinaciclib cell line adenoviruses and the bacterial pathogen Listeria monocytogenes, use clathrin-dependent

endocytosis as an invasion mechanism into target cells.48,49 Some mycoplasma species are also known to have invasive properties to host cells,43 but their invasion mechanism still remains unclear. For example, Mycoplasma penetrans, which is the most representative invasive mycoplasma, is known to possess a 65 000 molecular weight fibronectin-binding protein, which is considered to play an important role for its adhesion on a host cell.50 Our finding that the lipopeptide FSL-1 derived from mycoplasmal membrane protein is internalized by a clathrin-dependent endocytosis strongly suggests that membrane lipoproteins play a key role in the invasion of mycoplasmas into host cells. Studies to clarify the roles of mycoplasmal

lipoproteins in invasion into host cells are in progress. This work was supported by Grants-in-Aid for Scientific Research (B19390477 and C19592166) provided by the Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B2179178009) provided by the Ministry of Education, Culture, Sports, Science and Technology, and Grants-in-Aid provided by the Akiyama Foundation (PK430031). The authors have no financial conflict of interest. “
“Hematopoietic 4-Aminobutyrate aminotransferase Stem Cell Laboratory, Lund University, Lund, Sweden Virus-like particles (VLPs) of human papillomavirus (HPV) are used as a vaccine against HPV-induced cancer, and recently we have shown that these VLPs are able to activate natural killer (NK) cells. Since NK cells collaborate with dendritic cells (DCs) to induce an immune response against viral infections and tumors, we studied the impact of this crosstalk in the context of HPV vaccination. NK cells in the presence of HPV-VLPs enhanced DC-maturation as shown by an upregulation of CD86 and HLA-DR and an increased production of IL-12p70, but not of the immunosuppressive cytokine IL-10. This activation was bidirectional.

, 2009; Cutrufello et al , 2010) PCR has been demonstrated as an

, 2009; Cutrufello et al., 2010). PCR has been demonstrated as an extremely useful technique for an early diagnosis of intraocular TB since it can be performed with very small sample sizes obtained from eyes and the clinical improvement with ATT has been observed in most of the patients with positive PCR (Cheng et al.,

2004; Gupta et al., 2007). A nested PCR targeting MPB-64 protein gene was earlier demonstrated in formalin-fixed paraffin-embedded tissue of epiretinal membrane (Madhavan et al., 2000). This assay could detect 0.25 fg of DNA, and the quantity is sensitive https://www.selleckchem.com/products/ABT-263.html enough to detect a single bacillus in epiretinal membrane from Eales’disease, however, lesser sensitivity was observed with the same nested PCR assay in vitreous samples (Madhavan et al., 2002; Table 1). Recently, the utility of real-time PCR based on IS6110 or MPT-64 protein gene target has been explored in the diagnosis of ocular TB with promising results (Sharma et al., 2011c; Wroblewski et al., 2011). In addition,

M. tuberculosis could be detected in corneas from donors using PCR assay, and such findings may be used to re-evaluate criteria for suitability of donors with active TB, and further studies should be carried out to investigate whether recipients with PCR-positive corneas would eventually lead Selleckchem Everolimus to disease transmission (Catedral et al., 2010). Pericardial TB is the most common cause of pericarditis in African and Asian countries (Cherian, 2004). It arises secondary to contiguous spread from mediastinal nodes, lungs or during miliary dissemination (Golden & Vikram, 2005). The elevated levels of ADA and IFN-γ have been documented in pericardial TB (Burgess et al., 2002), but these assays have limitations as detailed earlier in pleural

TB. The utility of conventional PCR as well as nested PCR has been described for the diagnosis of acute pleuropericardial TB and chronic constrictive pericarditis (Tzoanopoulos et al., 2001; Zamirian et al., 2007). The clinical ROS1 diagnosis of thyroid TB is rarely investigated unless there is multinodular goitre, abscess or chronic sinus in the gland (Bulbuloglu et al., 2006). The diagnosis of primary thyroid TB is mostly dependent on chest X-ray and ultrasonography; however, these methods usually fail (Ghosh et al., 2007). Multiplex PCR targeting IS6110, 65 kDa and dnaJ genes has been established to confirm thyroid TB (Ghosh et al., 2007). TB mastitis or breast TB is a rare presentation of EPTB even in endemic countries. The most common clinical presentation of breast TB is usually a solitary, ill-defined, unilateral hard lump situated in the central or upper outer quadrant of the breasts (Baharoon, 2008). Mycobacterium tuberculosis bacilli can reach breasts through lymphatic, haematogenous or contiguous seeding (Sharma & Mohan, 2004).

These include the ability of TcdA to induce the release of the pr

These include the ability of TcdA to induce the release of the pro-inflammatory mediators IL-1β,[62] TNF-α,[63] IFN-γ,[64] CXCL1,[48] CXCL2[49] and CCL3,[65] as well as the fact that both IFN-γ−/−[64] and CCR1−/−[65] mice have a milder form of enteritis in response to TcdA injection. Despite the useful insights provided by the ileal loop model into the actions of C. difficile toxins, it should be noted that the model has some important shortcomings. First, it is a surgery-based model, which entails the injection

of C. difficile toxin preparations into the animal and not infection with the bacterium itself; second, it targets the wrong organ for disease, i.e. ileum instead of the colon; and third, it does not reflect any interaction of C. difficile with the host’s microbiota. The current MG132 work is the first to assess the induction of the Selleck AZD1208 UPR during acute C. difficile infection. A number of recent studies have implicated the UPR in the response to different forms of intestinal inflammation. These include the protective role(s) of XBP1,[17] ATF6[18] and eIF2α phosphorylation[19] against dextran sodium

sulphate-induced colitis. Despite the phosphorylation of eIF2α and the slight up-regulation of the phospho-eIF2α targets Wars and Gadd34 in the caeca and colons of C. difficile-infected mice (which serve as an early indication of phospho-eIF2α exerting its downstream effect), the lack of Xbp1 splicing and the absence of ER chaperone up-regulation in these tissues cast serious doubt on the activation of the UPR in this model of infection. Although numerous laboratories have shown that the UPR output can be modulated in a context-specific manner,[66, 67] a more likely explanation for the current set of findings is the phosphorylation of eIF2α by a kinase other than PERK. Of the four kinases that can phosphorylate Chlormezanone eIF2α, Protein Kinase RNA-activated (PKR) is the most plausible candidate. The phosphorylation of AKT and STAT3, as well as eIF2α,

in the C. difficile-infected mice gives further credence to this hypothesis because, in addition to phosphorylating eIF2α, PKR is an upstream inducer of both AKT and STAT3 phosphorylation.[68] AKT plays an important role in promoting intestinal epithelial homeostasis and wound repair during intestinal inflammation.[69] Furthermore, the protective effect of lysophosphatidic acid against C. difficile toxin-induced cell death in vitro is in part due to its induction of AKT phosphorylation.[70] Therefore, the phosphorylation of AKT in the C. difficile-infected mice may be a pro-survival signal that aims to counteract and contain the inflicted epithelial damage. The phosphorylation of STAT3 in the C. difficile-infected mice should be viewed from a broader perspective. First, the use of STAT3IEC-KO mice has shown that activation of intestinal epithelial STAT3 regulates immune homeostasis in the gut by promoting IL-22-dependent mucosal wound healing.

Thus, microbial DNA sensing signals danger but immunogenic DNA is

Thus, microbial DNA sensing signals danger but immunogenic DNA is inherently dangerous and responses to DNA must be regulated—even under sterile homeostatic conditions—to avoid inciting horror autotoxicus. Several reviews describe the recent rapid progress

in elucidating cytosolic DNA sensors that induce immunogenic responses to infections or vaccines, and that provoke spontaneous hyper-immunity via the STING/IFN-β pathway [1-6]. However, this focused perspective neglects immune regulatory responses mediated by some interferon-stimulated genes (ISGs). For example, IFN-β has been shown to induce indoleamine 2,3 dioxygenase (IDO), an enzyme that regulates T-cell responses www.selleckchem.com/products/pirfenidone.html and activates Foxp3-lineage CD4+ regulatory T (Treg) cells in settings of inflammation (reviewed in [9]). Recent studies also highlight unanticipated roles for IFN-β in attenuating host immunity to lymphocytic choriomeningitis virus infection [10, 11] and Listeria monocytogenes

vaccination [12], though downstream regulatory mechanisms were not defined. Here, we focus on immune regulatory responses to cytosolic DNA sensing via the STING/IFN-β pathway in physiologic settings, consider the potential biologic significance of such responses, and discuss novel opportunities to manipulate these responses for therapeutic benefit. DNA sensing alerts hosts to the presence of dangerous pathogens Panobinostat ic50 and DNA is used widely as a vaccine adjuvant to drive immunity. Until recently, DNA sensing in mammals was considered an exclusive attribute of specialized immune cells, such as plasmacytoid dendritic cells (pDCs) and some B cells, all expressing TLR9, which senses prokaryotic Nintedanib (BIBF 1120) DNA. TLR9 binds unmethylated CpG dimers in DNA to induce

IFN-type I and this response elicits host immunity to microbial infections due to the immunogenic effects of ISGs, including an array of proinflammatory cytokines. Thus, TLR9 detects danger (pathogens) and elicits responses that eliminate them. As detailed in several recent reviews, cytosolic DNA sensors extend the scope of this “defense against danger” paradigm due to their number and broad distribution in a wide range of immune and stromal cell types [1-6]. Several cytosolic DNA sensors, including cyclic GMP-AMP synthase (cGAS) have been shown to activate STING, which interacts with TANK-binding kinase (TBK1) and interferon response factor-3 (IRF3) to induce IFN-β (Fig. 1). Cyclic dinucleotides (CDNs), such as cyclic diguanyl monophosphate (cdiGMP), have also been shown to activate STING to induce IFN-β, and some microbial organisms such as Listeria produce CDNs, which are sensed via STING to alert hosts to the presence of microbial infections [13-16].

Conclusion: 

Conclusion:  Selleckchem DAPT Awareness of increased cancer risk and cancer screening among kidney transplant recipients is focused narrowly on skin

cancer, with limited awareness for other cancers. Recipients prioritized current health issues rather than future risks to health such as cancer. Transplant care providers should provide evidence-based information on cancer risk and screening, being sensitive to the timing and needs of the patient. Improved knowledge may empower patients to minimize their risk of cancer by participating in screening and cancer prevention programmes. “
“Aim:  To investigate the effects of recombinant human endostatin (Endostar) on peritoneum angiogenesis in a model of dialysate exposure in rats. Methods:  Forty male Sprague–Dawley rats were randomized to five groups: normal (group 1); uraemia (group 2); 4.25% peritoneal dialysate (PD) uraemic (group 3); uraemia + PD + recombinant human endostatin 10 mg/kg PD (group

4); and uraemia + PD + recombinant human endostatin 40 mg/kg PD (group 5). The uraemic rats model was established by 5/6 nephrectomy. Endostatin was administrated by s.c. injection every other day, over 28 days. After 28 days of PD fluid exposure, immunohistochemistry EPZ-6438 mw and reverse transcript polymerase chain reaction were used to detect protein and mRNA expressions of vascular endothelial growth factor (VEGF) and basic fibroblast

growth factor (bFGF) in each group. Microvessel density (MVD) was measured by immunohistochemistry. Results:  Compared with group PD184352 (CI-1040) 1, the mRNA and protein expressions of VEGF and bFGF were significantly upregulated in groups 2 and 3 (P < 0.05). Compared with group 3, the mRNA and protein expressions of VEGF and bFGF were significantly downregulated in groups 4 and 5 (P < 0.05). Compared with group 4, the mRNA and protein expressions of VEGF and bFGF were significantly downregulated in group 5 (P < 0.05). Compared with group 1, MVD was significantly upregulated in groups 2 and 3 (P < 0.05). Compared with group 3, MVD was significantly downregulated in groups 4 and 5 (P < 0.05). Conclusion:  Endostar can effectively inhibit rat peritoneum neoangiogenesis and the effect was dose-dependent. "
“Aim:  Identification of glomerulomegaly is a prerequisite for diagnosis of obesity-related glomerulopathy, so measurement of glomerular size is of critical importance.

Depending on the extent of both the underlying infection and the

Depending on the extent of both the underlying infection and the host response, including compensatory anti-inflammatory

PD-0332991 mouse responses [43], these events can lead to septic shock, a condition in which poor perfusion can lead to major organ failure and death. In conjunction with rapid administration of antibiotics, early goal-directed therapy to normalize hemodynamic indices has been shown to limit mortality in septic patients, particularly if it is initiated within six hours of clinical presentation [36]. Resuscitation via intravenous administration of fluids is a key component of this approach, and can be undertaken with either crystalloids or colloids [31]. The former are solutions of mineral salts (e.g., normal saline or Ringer’s lactate), while the latter also contain osmotically active macromolecules of either natural (e.g., albumin) or artificial (e.g., hydroxyethyl starches) origin. Randomized clinical trials have shown that albumin was equivalent

to saline in critically ill patients, including a sepsis sub-group [9], while excess renal failure or mortality [3, 32, 28] selleck compound has been associated with the use of starch products as compared to crystalloids. In spite of progress associated with the adoption of early goal-directed therapy and aggressive fluid resuscitation, a heavy burden of illness remains, as evidenced by the increasing incidence of sepsis [35]. An improved resuscitation fluid for septic patients would be one in which the macromolecule was not only

osmotically active, like most plasma proteins, but also conferred additional benefits without causing harm such as that associated with hydroxyethyl starch products [28]. GBA3 AGP is one such plasma protein, since it has been suggested to assist in the maintenance of capillary permeability, by increasing the charge selectivity of the endothelium [14, 18, 40, 6]. AGP is a glycosylated positive acute phase protein whose upregulation during inflammation may also be indicative of an anti-inflammatory role [13]. Administration of bovine AGP has been reported to increase survival rates in mice challenged with lethal doses of Klebsiella pneumonia [15]. Addition of human AGP to the resuscitation protocol, in a rat model of hemorrhagic shock, increased blood volume and decreased edema formation [20]; similarly human AGP administration reduced mortality in a rat model of septic peritonitis [26]. The liver plays an important role in responding to infectious challenges, in part due to its filtering of blood draining the gastrointestinal tract and the spleen, brought to the organ via the hepatic portal vein [19]. In addition, it serves as a source of inflammatory mediators [7], and is an important modulator of multiple organ dysfunction syndrome [22].

The trypanosomatids are flagellated protozoan parasites that incl

The trypanosomatids are flagellated protozoan parasites that include the species Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. These ancient eukaryotic

pathogens are the causative agents for African sleeping sickness, Chagas disease and cutaneous Leishmaniasis, respectively, which impact hundreds of millions of people worldwide in terms of public health and economy. The total deaths resulting from these devastating diseases approach 110 000 annually and the combined burden PLX4032 chemical structure measured by disability-adjusted life years (DALYs) is approximately 5 million (1). There are currently no vaccines and the few available drugs display toxic side effects. The need to develop vaccines and drugs to prevent and treat these neglected tropical diseases (NTDs) is urgent. These very unusual parasites this website belong to the order Kinetoplastida, a name

derived from a unique organelle called kinetoplast in their single, large mitochondrion. This structure contains a network of small interconnected DNA minicircles and maxicircles (2,3). Many biologically important features were first discovered and characterized in trypanosomatids including programmed antigenic variation of surface glycoproteins (4–7), polycistronic transcription and trans-splicing of pre-RNAs (8), mitochondrial RNA editing (9), unique organelles such as glycosomes Tideglusib (10), the atypical usage of RNA polymerase I for developmentally regulated

genes (11) and distinct metabolic pathways. Such unique biological characteristics have contributed to making trypanosomatids attractive models for pathogen research. The simultaneous availability of the reference genome sequence for three trypanosomatids (Tritryps), T. brucei (strain 927) (12), T. cruzi (strain CL Brener) (13) and L. major (strain Friedlin) (14) has provided important insights into the biology of trypanosomatids and crucial blueprints for large-scale investigations. It also allowed comparisons of the gene content and genome architecture of the three parasites and a better understanding of the genetic and evolutionary bases of the shared and distinct parasitic modes and lifestyles of these pathogens. Comparative analyses revealed a striking level of synteny and a conserved core of approximately 6200 genes, 94% of which are arranged in syntenic directional gene clusters (15). Amino acid alignments of a large subset of the 3-way clusters of orthologous genes (COGs) revealed an average 57% identity between T. cruzi and T. brucei coding sequences (CDSs), and 44% CDS identity between T. cruzi and L. major, reflecting the expected phylogenetic relationships (16–19).

The strong LCMV NP specific Ab response after low-dose infection

The strong LCMV NP specific Ab response after low-dose infection is likely due to potent LCMV-specific CTL response that leads to lysis of infected cells and release of cell internal viral proteins [14]. We are not aware of any previous data on the biological role of LCMV NP specific Ab in infection but our findings in the LCMV model are reminiscent

of previous work in the influenza virus system. Similar to our observations, influenza NP specific Abs have been shown to decrease viral titers in the lungs after adoptive transfer [24, 25]. The underlying mechanisms, however, appear to be distinct. In contrast to our data, the antiviral activity of the transferred influenza selleck compound NP-specific Abs was dependent on host FcγR expression and injection of NP-specific Abs also enhanced the NP-specific CTL response in the influenza system [25]. Remarkably, we could detect LCMV NP epitopes on the cell surface of intact

LCMV-infected MC57G fibrosarcoma cells with NP-specific mAbs. Similar positive staining results were also obtained with LCMV-infected L929 cells and with other viral strains such as WE or clone 13 (data not shown). Moreover, we used two different check details LCMV NP specific mAbs rendering the possibility that this result was due to a peculiar cross-reactivity of the reagents very unlikely. Of note, the presence of LCMV NP epitopes on the surface of infected cells and virions has been described more than 20 years ago by Lehmann-Grube and colleagues [23]. However, follow-up studies based on this surprising observation were never published. Thus, it is

not yet understood why NP or fragments of this protein can be detected on the surface of intact cells or virions. LCMV NP represents the most Suplatast tosilate abundant internal viral protein in both infected cells and virions. Adsorption of NP released by necrotic or killed infected cells onto the cell surface of intact cells or virions may represent one possible explanation for these findings. Interestingly, presence of influenza virus NP epitopes on the surface of infected cells has also been described long time ago but the underlying mechanism is nonetheless still obscure [26, 27]. Hence, in both viral systems, epitopes of internal proteins usually associated with the viral RNA can be found on the surface of infected cells and corresponding Abs facilitate viral elimination in vivo although they are unable to directly prevent virus entry into host cells. Bergthaler et al. showed previously that clearance of high-dose LCMV WE infection in B6 mice was dependent on the generation of antigen-specific Abs [9]. Ab transfer experiments in this study were, however, only performed with the virus neutralizing mAb KL25 specific for LCMV GP. Interestingly, we observed that neither complement component C3 nor FcγR were required for the antiviral activity of the transferred nonneutralizing LCMV-specific Ab.

As a consequence, LPS-treatment enhanced the migratory activity a

As a consequence, LPS-treatment enhanced the migratory activity along a chemokine (CCL21)-gradient in WT, but not in TLR4-deficient BMDCs suggesting that the LPS/TLR4-induced Navitoclax mw swelling response facilitates DC migration. Moreover, the role of calcium-activated potassium

channels (KCa3.1) as putative regulators of immune cell volume regulation and migration was analyzed in LPS-challenged BMDCs. We found that the LPS-induced swelling of KCa3.1-deficient DCs was impaired when compared to WT DCs. Accordingly, the LPS-induced increase in [Ca2+]i detected in WT DCs was reduced in KCa3.1-deficient DCs. Finally, directed migration of LPS-challenged KCa3.1-deficient DCs was low compared to WT DCs indicating that activation of KCa3.1 is involved in LPS-induced DC migration. These findings suggest that both TLR4 and KCa3.1 contribute to the migration of LPS-activated DCs as an important feature of the adaptive immune response. Dendritic cells (DCs) are the most potent antigen-presenting cells that play a key role in regulating T-cell-mediated adaptive immune responses [1]. Immature DCs placed in peripheral tissues act as sensors for microbial pathogens, stress, or inflammatory signals. Uptake of antigens or exposure to inflammatory stimuli PD-0332991 chemical structure at peripheral sites causes maturation of DCs including the up-regulation of MHC and co-stimulatory

molecules and the conversion to a migratory phenotype [1]. Migration of DCs to the draining lymph nodes and presentation of the antigen to T cells can initiate a protective immune response or promote regulatory T cell responses that help to maintain tolerance against the antigen [2]. Recognition of LPS, a cell wall component of gram-negative bacteria by DCs is mediated mainly by Toll-like receptor

(TLR) 4 [3, 4]. Binding of LPS to TLR4 causes maturation and migration of DCs [5]. However, the underlying mechanisms of LPS-induced DC migration are not well understood. In DCs stimulated with LPS dissolution of cell adhesion structures in a TLR4-dependent manner has been described [6] suggesting that TLR4 signaling and actin-driven cytoskeletal rearrangement are involved Cyclin-dependent kinase 3 in LPS-induced DC migration. Additionally, it has been demonstrated that ion channels contribute to the conversion of DCs towards a migratory phenotype [7]. Accordingly, DCs respond to LPS with a fast increase in free cytosolic calcium ions originating from both intracellular and extracellular calcium stores [7]. Moreover, activation of voltage-gated potassium channels (Kv1.3 and Kv1.5) and sustained increase in [Ca2+]i via store-operated calcium channels (ICRAC) have been shown to play an important role for LPS-induced DC maturation and migration [7]. In addition to voltage-gated K+ channels several members of Ca2+-activated K+ channels like BK (KCa1.1), SK3 (KCa2.3), and in particular SK4 (KCa3.1, IK1, KCNN4) are involved in cell migration [8].